Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 16, 2025
- 
            Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments.more » « less
- 
            null (Ed.)In this paper, we introduce a practical system for interactive video object mask annotation, which can support multiple back-end methods. To demonstrate the generalization of our system, we introduce a novel approach for video object annotation. Our proposed system takes scribbles at a chosen key-frame from the end-users via a user-friendly interface and produces masks of corresponding objects at the key-frame via the Control-Point-based Scribbles-to-Mask (CPSM) module. The object masks at the key-frame are then propagated to other frames and refined through the Multi-Referenced Guided Segmentation (MRGS) module. Last but not least, the user can correct wrong segmentation at some frames, and the corrected mask is continuously propagated to other frames in the video via the MRGS to produce the object masks at all video frames.more » « less
- 
            Stochastic gradient descent (SGD) is the optimization algorithm of choice in many machine learning applications such as regularized empirical risk minimization and training deep neural networks. The classical analysis of convergence of SGD is carried out under the assumption that the norm of the stochastic gradient is uniformly bounded. While this might hold for some loss functions, it is always violated for cases where the objective function is strongly convex. In (Bottou et al.,2016) a new analysis of convergence of SGD is performed under the assumption that stochastic gradients are bounded with respect to the true gradient norm. Here we show that for stochastic problems arising in machine learning such bound always holds. Moreover, we propose an alternative convergence analysis of SGD with diminishing learning rate regime, which is results in more relaxed conditions that those in (Bottou et al.,2016). We then move on the asynchronous parallel setting, and prove convergence of the Hogwild! algorithm in the same regime, obtaining the first convergence results for this method in the case of diminished learning rate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available